Farms.com Home   News

Advancing Crop Breeding Through Targeted Genome Modification

By Zhang Nannan

Modern crop breeding is entering a new era of genome design, led by genome editing technologies as mainstream tools for targeted genome modification.

In a review published in Nature Reviews Genetics, Dr. Gao Caixia from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences has described the current progress of the technical innovation in editing tools, the development of superior delivery methods as well as their advanced applications in crop breeding.

Targeted  modification technologies have revolutionized crop breeding methods and significantly improved breeding efficiency. Understanding the  of targeted genome modification tools and the iterative strategies involved in employing them is essential for their application in crop improvement.

In this review, Gao's team systematically introduced various genome editing tools, ranging from single base editing to manipulation of DNA fragments exceeding kilobases. In particular, the team focused on summarizing the latest advances in precise genome editing technologies, including base editing, prime editing, and precise manipulation tools for large DNA fragments.

Click here to see more...

Trending Video

Not only is corn getting sweatier, it's getting smarter

Video: Not only is corn getting sweatier, it's getting smarter


Over the past several weeks, much of the U.S. Midwest has experienced prolonged episodes of extreme heat, a trend also observed in other major corn-producing regions of North America such as eastern South Dakota, southern Ontario, and parts of Kansas and Missouri. These high-temperature events can place significant physiological stress on maize (Zea mays L.), which is cultivated on approximately 90 million acres across the United States, with leading production in Iowa, Illinois, Nebraska, and Minnesota. Like all maize, Bayer’s PRECEON™ Smart Corn System is subject to transpiration-driven water loss under high heat. However, this system incorporates agronomic traits designed to improve standability through enhanced stalk strength, thereby reducing lodging risk during stress conditions. Furthermore, the system supports precision agriculture practices by enabling more targeted fertilizer and crop protection applications. This approach not only helps to optimize input efficiency but also contributes to maintaining or increasing yield potential under variable environmental stresses such as heat waves, which are becoming more frequent in corn belt and fringe production regions.