Farms.com Home   News

Getting To The Root(s) Of The Problem

By Jason Kosovski

When studying plants, sampling the above-ground parts we are all familiar with, such as leaves, flowers, and seeds, is the norm, in part because it is much easier to sample thousands of leaves and stalks, rather than digging up thousands of plants to analyze roots. Now, the Department of Energy’s Advanced Research Projects Agency-Energy has awarded $6.1 million to a group led by Colorado State University to do just that – learn about plant genetics from exploring plant roots as well as the soil around the plants.



John McKay, an associate professor in CSU’s Department of Bioagricultural Sciences and Pest Management, will lead the project – Rhizosphere Observations Optimizing Terrestrial Sequestration (ROOTS) – which will automate the phenotyping of plant roots in agricultural fields and allow researchers to learn more about the genetic composition of the plants based on their roots.

Getting to the root of the matter

“This grant will allow us to scale up our research and look at roots in thousands of research plots and millions of plants,” said McKay. “Previously, we were limited by the number of plants we could harvest by hand which meant we lacked the power to identify genes underlying important variation in root traits, including the ideal root systems for maximizing water and nutrient use efficiency.”

The project will employ two different approaches – pulling the plants out of the ground using a machine currently deployed to examine above-ground material and examining the soil around the plants by using novel, automated sampling the soil throughout the growing season. The researchers are interested in learning which nutrients each plant genotype is using and how much carbon remains in the soil.

Impact of droughts

One of the project’s intended outcomes is to evaluate the role of roots in areas impacted by droughts. Because roots are not photosynthetic, breeders inadvertently select against robust, drought tolerant root systems if breeding takes place in optimal production environments.

“With the exception of resistance to root pests, very little effort has been invested in trying to understand the genes that underlie root variation in the major crops. Here, we will combine best practices in the genetics of complex traits, with novel technology and modeling to accurately capture variation in root traits and predict their effects on soil,” said McKay.

Three-year project

The three-year project will begin by looking at corn, although McKay thinks that the technology and findings developed by the team will benefit other crops. McKay will lead the team that includes researchers from Iowa State University, the University of Arizona, the Danforth Center for Plant Sciences, C-Zero, and USDA-ARS in Arizona with support from the Colorado Corn Growers.

Source: colostate.edu


Trending Video

Why Your Food Future Could be Trapped in a Seed Morgue

Video: Why Your Food Future Could be Trapped in a Seed Morgue

In a world of PowerPoint overload, Rex Bernardo stands out. No bullet points. No charts. No jargon. Just stories and photographs. At this year’s National Association for Plant Breeding conference on the Big Island of Hawaii, he stood before a room of peers — all experts in the science of seeds — and did something radical: he showed them images. He told them stories. And he asked them to remember not what they saw, but how they felt.

Bernardo, recipient of the 2025 Lifetime Achievement Award, has spent his career searching for the genetic treasures tucked inside what plant breeders call exotic germplasm — ancient, often wild genetic lines that hold secrets to resilience, taste, and traits we've forgotten to value.

But Bernardo didn’t always think this way.

“I worked in private industry for nearly a decade,” he recalls. “I remember one breeder saying, ‘We’re making new hybrids, but they’re basically the same genetics.’ That stuck with me. Where is the new diversity going to come from?”

For Bernardo, part of the answer lies in the world’s gene banks — vast vaults of seed samples collected from every corner of the globe. Yet, he says, many of these vaults have quietly become “seed morgues.” “Something goes in, but it never comes out,” he explains. “We need to start treating these collections like living investments, not museums of dead potential.”

That potential — and the barriers to unlocking it — are deeply personal for Bernardo. He’s wrestled with international policies that prevent access to valuable lines (like North Korean corn) and with the slow, painstaking science of transferring useful traits from wild relatives into elite lines that farmers can actually grow. Sometimes it works. Sometimes it doesn’t. But he’s convinced that success starts not in the lab, but in the way we communicate.

“The fact sheet model isn’t cutting it anymore,” he says. “We hand out a paper about a new variety and think that’s enough. But stories? Plants you can see and touch? That’s what stays with people.”

Bernardo practices what he preaches. At the University of Minnesota, he helped launch a student-led breeding program that’s working to adapt leafy African vegetables for the Twin Cities’ African diaspora. The goal? Culturally relevant crops that mature in Minnesota’s shorter growing season — and can be regrown year after year.

“That’s real impact,” he says. “Helping people grow food that’s meaningful to them, not just what's commercially viable.”

He’s also brewed plant breeding into something more relatable — literally. Coffee and beer have become unexpected tools in his mission to make science accessible. His undergraduate course on coffee, for instance, connects the dots between genetics, geography, and culture. “Everyone drinks coffee,” he says. “It’s a conversation starter. It’s a gateway into plant science.”