Farms.com Home   News

Nature-inspired Solutions to Sustainably Increase Crop Yield

Nature-inspired Solutions to Sustainably Increase Crop Yield
The 5-year 8M € project GAIN4CROPS aims to improve photosynthetic efficiency of the oil crop sunflower using nature-inspired solutions and innovative breeding techniques.
 
GAIN4CROPS is developing novel disruptive technologies to overcome one of the main constraints of photosynthesis: the photorespiration, a process that reduces CO2 assimilation efficiency, and thus biomass yield and agricultural productivity.
 
Most plants (85%), including rice, wheat, soybeans and all trees, perform photosynthesis according to the so-called C3 type. At higher temperatures, their photosynthetic efficiency is strongly impaired by photorespiration, which constrains yield. However, some plants have evolved metabolic strategies to bypass this effect: they actively accumulate the CO2 into specific compartments, thus creating an environment unsuitable for photorespiration.
 
GAIN4CROPS takes inspiration from one of these naturally occurring metabolic strategies and proposes a stepwise approach to enhance the efficiency of photosynthesis. The Consortium aims to optimize the process by designing novel metabolic pathways that make better use of cellular resources by avoiding the release of CO2 back into the atmosphere.
 
“Attempts to include new metabolisms into crops proved to be very complicated, primarily due to difficulties in introducing a de novo leaf anatomy and fitting in the complex regulatory networks of the cell.” explains the project coordinator Prof. Andreas Weber, from the Institute of Plant Biochemistry of the Heinrich Heine University Düsseldorf. “In GAIN4CROPS, instead, we build on the natural physiology of the sunflower – which has the innate capacity to evolve towards improved metabolisms, ultimately increasing agricultural productivity.”
 
Overall, the approaches pursued by GAIN4CROPS hold potential for decreasing the use of three major resources in agriculture: land, nitrogen, and water. A more efficient photosynthetic rate brings to greater crop yield per unit area land, which in turn limits the expansion of the arable land and the need for nitrogen fertilizers and water.
 
The benefits of GAIN4CROPS plants become even more evident at higher temperatures, promoting the development of climate-resilient crops as needed to address the consequences of anthropogenic climate change.
Click here to see more...

Trending Video

Sulfur Foundations in High Yield Soybeans

Video: Sulfur Foundations in High Yield Soybeans

This presentation was recorded at Illinois Soybean Association's Better Beans event on January 11, 2024 in Bloomington, IL. Shaun Casteel, Ph.D., is Associate Professor of Agronomy and Extension Soybean Specialist for Purdue University. Dr. Casteel was born and raised on the family farm in east-central Illinois. He earned his B.S. in Crop Sciences at the University of Illinois, his M.S. in Crop Science and his Ph.D. in Soil Science at North Carolina State University. He has given over 850 invited presentations to 60,000 people across the country and world. Key areas of interest include: sulfur synergies, precision management of resources and practices; integration of soil characteristics, nutrient inputs, and crop physiology; and the influence of agronomic practices on yield physiology of soybean. His practical research also extends to field-scale trials with seeding rates, sulfur, and intensive management of soybean. You can follow him on his podcast Purdue Crop Chat