Farms.com Home   News

Study Shows How Plant Roots Access Deeper Soils in Search of Water

Scientists have discovered how plants adapt their root systems in drought conditions to grow steeper into the soil to access deeper water reserves.

Plant scientists from the University of Nottingham, in collaboration with Shanghai Jiao Tong University, have identified how abscisic acid (ABA), a plant hormone known for its role in drought response, influences root growth angles in cereal crops such as rice and maize. The results have been published in Current Biology.

The study highlights how ABA and auxin, another key hormone, work together to shape root growth angle, providing a potential strategy to develop drought-resistant crops with improved root system architecture.

Drought poses a major threat to global food security, and enhancing the ability of crops to withstand water shortages is crucial. Drought, a major abiotic stressor, has caused substantial crop production losses of approximately $30 billion over the past decade. With a projected population of 10 billion by 2050 and serious freshwater depletion, developing drought-resistant crops is of paramount importance

Plants rely on their root systems, the primary organs for interacting with soil, to actively seek water. In drought conditions, water often depletes in the topsoil and remains accessible only in the deeper subsoil layers. Abscisic acid (ABA) plays an important role in helping plants adapt to these challenging conditions. This new study gives new insights into how ABA changes root growth angles to enable plants to reach out deeper subsoils in search of water.

Click here to see more...

Trending Video

Sustainability mindset: Folashade Ekakitie

Video: Sustainability mindset: Folashade Ekakitie

Folashade Ekakitie, IT Delivery Lead, aligns IT initiatives and technologies with the company’s sustainability ambitions.