The crops we grow in the field often form dense canopies with many overlapping leaves, such that young "sun leaves" at the top of the canopy are exposed to full sunlight with older "shade leaves" at the bottom. In order to maximize photosynthesis, resource-use efficiency, and yield, sun leaves typically maximize photosynthetic efficiency at high light, while shade leaves maximize efficiency at low light.
"However, in some of our most important crops, a maladaptation causes a loss of photosynthetic efficiency in leaves at the bottom of the canopy, which limits the plants' ability to photosynthesize and produce yields," said Charles Pignon, a former postdoctoral researcher at the University of Illinois. "In order to address this problem, it's important to know whether this is caused by leaves being older or exposed to a different light environment at the bottom of the canopy."
This question was answered in a recent study published in Frontiers in Plant Science, where researchers from the University of Illinois and the University of Oxford worked with maize and the bioenergy crop Miscanthus to find that the decline in the efficiency of leaves at the bottom of the canopy was not due to their age but to their altered light environment.
This work was conducted through the Illinois Summer Fellows (ISF) program. Launched in 2018, ISF allows undergraduate students to conduct plant science research alongside highly skilled scientists at Illinois. The 2018 Fellows Robert Collison and Emma Raven worked with Pignon and Stephen Long, the Stanley O. Ikenberry Chair Professor of Plant Biology and Crop Sciences at Illinois, to confirm and better understand results from previous studies for Water Efficient Sorghum Technologies (WEST), a research project that aimed to develop bioenergy crops that produce more biomass with less water.
Photosynthesis is the natural process that plants use to convert sunlight into energy. Plants usually fall under the two main types of photosynthesis—C3 and C4. The difference between these types is that C4 plants have a mechanism that concentrates carbon dioxide inside their leaves, allowing them to photosynthesize more efficiently. However, most plants, trees, and crops operate using the less efficient C3 photosynthesis.
Both sun and shade leaves contribute to photosynthetic carbon assimilation, producing the sugars that feed the plant and fuel yield. Therefore, lower canopy photosynthesis is an important process that affects the yield of the whole plant, with an estimated 50 percent of total canopy carbon gain contributed by shade leaves.
Previous studies of C3 plants have shown that shaded leaves are typically more efficient than sun leaves at low light intensities, meaning shaded leaves adapt to their low light environment. However, a previous study by Pignon and Long showed that this is not the case for all plants. The canopies of maize and Miscanthus, C4 crops that usually photosynthesize more efficiently than C3 crops, had shade leaves that were less photosynthetically efficient, suggesting a maladaptation in these important crops.
"Shade leaves receive very little light, so they usually become very efficient with low light use," said Pignon, now a plant physiologist at Benson Hill in St. Louis. "Essentially, they make the most of what little light they do receive. However, in the C4 crops we studied, shade leaves in these crops not only receive very little light, but they also use it less efficiently. It's a very costly maladaptation in crops that are otherwise highly productive—hence our calling it an Achilles' heel."
With six to eight layers of leaves in our modern maize crop stands, most leaves are shaded and can account for half of the plant's growth during the critical phase of grain filling.
Click here to see more...