Farms.com Home   News

Variety: Spice of Life for Bumble Bees

Variety: Spice of Life for Bumble Bees
The yield and quality of many crops benefit from pollination, but it isn't just honey bees that do this work: bumble bees also have a role. However, placing honey bee or bumble bee colonies next to the field does not guarantee that they will visit the desired plants since there may be other plant species flowering at the same time that prove more attractive. A team from the University of Göttingen, together with researchers from the University of Applied Sciences Mittweida and the Julius Kühn Institute, used innovative molecular biological methods and traditional microscopy to investigate the pollen collecting behaviour of honey bees and bumble bees in agricultural landscapes. They show that bumble bees take much more pollen from dif-ferent plant species than honey bees to satisfy their need for protein. Furthermore, less pollen from the target - in this case strawberry plants - is collected when there are fields of flowering oilseed rape in the surrounding landscape. The results have been published in the journal Molecular Ecology.
 
The researchers placed honey bee and bumble bee colonies next to strawberry fields in the Göttingen and Kassel region and collected pollen from returning honey bees and bumble bees. The bees collect the pro-tein-rich pollen mainly for feeding their offspring. The pollen DNA was investigated working closely with the Division of Molecular Biology of Livestock and molecular Diagnostics at the University of Göttingen, and the Department of Biochemistry/Molecular Biology of the Mittweida University of Applied Sciences. "DNA analysis tells us which plant species the bees have visited and how diverse their foraging behaviour is. To do this, we sequenced the DNA of the pollen and compared the sequences using a database of regional plant species," says Dr Svenja Bänsch, post-doctoral researcher in Functional Agrobiodiversity at the Uni-versity of Göttingen.
Click here to see more...

Trending Video

Designing a Robotic Berry Picker

Video: Designing a Robotic Berry Picker


Since blackberries must be harvested by hand, the process is time-consuming and labor-intensive. To support a growing blackberry industry in Arkansas, food science associate professor Renee Threlfall is collaborating with mechanical engineering assistant professor Anthony Gunderman to develop a mechanical harvesting system. Most recently, the team designed a device to measure the force needed to pick a blackberry without damaging it. The data from this device will help inform the next stage of development and move the team closer to the goal of a fully autonomous robotic berry picker. The device was developed by Gunderman, with Yue Chen, a former U of A professor now at Georgia Tech, and Jeremy Collins, then a U of A undergraduate engineering student. To determine the force needed to pick blackberries without damage, the engineers worked with Threlfall and Andrea Myers, then a graduate student.