Farms.com Home   News

Finding the Best Targets to Improve Crop Yield by Following CO2 Journey Inside the Leaf

Finding the Best Targets to Improve Crop Yield by Following CO2 Journey Inside the Leaf

A team of scientists have measured the relative importance of the different obstacles that carbon dioxide (CO2) encounters in its voyage from the atmosphere to the interior of plant cells, where it is converted into sugars. This research leading method provides much needed information that will help to increase the yield of important food crops such as cowpea, soybean and cassava.

"Our data highlights promising targets to improve the diffusion of CO2 through the leaf with the aim of boosting crop productivity," says lead author Dr Tory Clarke, who works at The Australian National University (ANU), as part of the Realizing Increased Photosynthetic Efficiency (RIPE) project, an international research project that aims to improve photosynthesis to equip farmers worldwide with higher-yielding crops.

CO2 moves into the plant cells and is transformed into food during photosynthesis by enzymes located inside the chloroplasts. However, this journey is not a smooth one but rather one full of obstacles and resistances such as solid walls, liquid valleys and tunnels guarded by gate-keeper proteins.

"Our results will help enormously in the creation of more precise leaf and crop models, as we have linked the anatomical structures inside the leaves with important physiological crop aspects, such as the age of the leaf and its position in the canopy, to find out what is influencing CO2 uptake into leaf cells," says Dr Clarke, from the ARC Centre of Excellence for Translational Photosynthesis (CoETP).

The paper, published this week in the Royal Society journal Interface Focus, used tobacco as a model because this plant forms a canopy like other important food crops, such as soybean, cowpea and potato.

"Our aim is to make these crops more productive, but we want to improve not only the leaves at the top of the canopy, but propagate these changes through the whole plant. In this paper, we consider the inherit leaf variation within the canopy and its relationship to photosynthetic capacity," says CoETP's Dr Florence Danila, co-author of the paper.

The diffusion of CO2 from the air into leaf cells is essential for photosynthesis, but until now, the understanding of how this occurs has been quite limited.

Click here to see more...

Trending Video

Accuracy in testing for DON

Video: Accuracy in testing for DON

Deoxynivalenol (DON) is a mycotoxin naturally produced by the fungus that causes Gibberella ear rot in corn. Infection occurs through the corn silk channel when ideal temperatures (approx. 27°C) and higher humidity are present. Cool wet conditions after pollination favour continual disease development and determines the level of infection. Effective sampling, detection, and quantification of DON are challenging due to its uneven distribution on the ear as well as its presence across the field, resulting in infected and non-infected kernels in the same grain sample.