Farms.com Home   News

Plasmas Promote Protein Introduction In Plants

IMAGE
 
The introduction of organic matter, such as proteins, into living cells has multiple uses for basic scientific research and industrial techniques. For example, the behavior of cell components can be traced by introducing a protein that emits a fluorescent signal into the cell. While scientists have long been successful in delivering proteins into living animal cells, there are difficulties in using the same techniques for plant studies.
 
Developing a non-destructive method for protein introduction that could be used for genome editing and controlling a functionality, for example. Moreover, it will be expected to control flowering time by introducing flowering control proteins. With this in mind, Yuki Yanagawa and co-workers at the Institute of Agrobiological Sciences, NARO together with Akitoshi Okino and colleagues at the Tokyo Institute of Technology, Japan, have developed a potentially useful technique for introducing proteins into plant cells using non-thermal atmospheric pressure plasmas.
 
Plasmas are created by adding energy to a gas, causing the atoms in the gas to become ionized. Plasmas have already proved invaluable in multiple applications and recently showed promise in inactivating bacteria by damaging the bacterial cell surfaces. Thus, the same process may be used to disturb the surface structure of plant cells, allowing proteins to enter the cell interior.
 
The team tested their theory on tobacco, rice and Arabidopsis leaves or roots. They exposed groups of leaves to one of five different plasma types, and then immersed the leaves into solution containing a green fluorescent protein (sGFP) -- adenylate cyclase fusion protein. They found that those leaves treated with either carbon dioxide or nitrogen gas plasmas showed a high uptake of the protein into their cells.
Click here to see more...

Trending Video

Residue Management

Video: Residue Management

Residue Management conservation practice manages the amount, orientation, and distribution of crop and other plant residue on the soil surface year-round while limiting soil-disturbing activities used to grow and harvest crops in systems where the field surface is tilled prior to planting. This video explores how Ryan McKenzie implemented this conservation practice on his farm in Samson, Alabama.

Practice benefits:

• Increases organic matter

• Improves air quality

• Decreases energy costs

• Reduces erosion

• Improves soil health

The Conservation at Work video series was created to increase producer awareness of common conservation practices and was filmed at various locations throughout the country. Because conservation plans are specific to the unique resource needs on each farm and also soil type, weather conditions, etc., these videos were designed to serve as a general guide to the benefits of soil and water conservation and landowners should contact their local USDA office for individual consultation.