Farms.com Home   News

Artificial Intelligence Helps Predict Performance Of Sugarcane In The Field

Artificial Intelligence Helps Predict Performance Of Sugarcane In The Field

By Ricardo Muniz

A Brazilian study published in Scientific Reports shows that artificial intelligence (AI) can be used to create efficient models for genomic selection of sugarcane and forage grass varieties and predict their performance in the field on the basis of their DNA.

Machine learning is a branch of AI and computer science involving statistics and optimization, with countless applications. Its main goal is to create algorithms that automatically extract patterns from datasets. It can be used to predict the performance of a plant, including whether it will be resistant to or tolerant of biotic stresses such as pests and diseases caused by insects, nematodes, fungi or bacteria, and or abiotic stresses such as cold, drought, salinity or insufficient soil nutrients.

Crossing is the most widely used technique in traditional breeding programs. "You establish populations by crossing plants that are interesting. In the case of sugarcane, you cross a variety that produces a lot of sugar with another that's more resistant, for example. You cross them and then assess the performance of the resulting genotypes in the field," said computer scientist Alexandre Hild Aono, first author of the article on the study. Aono is a researcher at the State University of Campinas's Center for Molecular Biology and Genetic Engineering (CBMEG-UNICAMP). He graduated from the Federal University of São Paulo (UNIFESP).

"But this assessment process takes a long time and is very expensive. The method we propose can predict the performance of these plants even before they grow. We succeeded in predicting yield on the basis of the genetic material. This is significant because it saves many years of assessment," Aono explained.

In the case of sugarcane, the challenge is highly complex. Traditional breeding techniques take between nine and 12 years and incur high costs, according to Anete Pereira de Souza, a professor of plant genetics at UNICAMP's Institute of Biology and Aono's Ph.D. supervisor at CBMEG.

The main hurdle scientists face in trying to breed better varieties of polyploid plants such as sugarcane and forage grass is the complexity of their genomes. "In this case, we didn't even know if genomic selection would be possible, given the scarce resources and the difficulty of working with this complexity," Aono said.

Methods

The researchers began the genomic selection process with diploid plants (containing cells with two sets of chromosomes), as they have simpler genomes. "The problem is that high-value tropical plants like sugarcane aren't diploids but polyploids, which is a complication," Souza said.

While human beings and almost all animals are diploid, sugarcane may have as many as 12 copies of every chromosome. Any individual of the species Homo sapiens can have up to two variants of each gene, one inherited from the father and the other from the mother. Sugarcane is more complex because theoretically any gene can have many variants in the same individual. There are regions of its  with six sets of chromosomes, others with eight, ten, and even 12 sets. "The genetics is so complex that breeders work with  as if it were diploid," Souza said.

In 2001, Theodorus Meuwissen, a Dutch scientist who is currently a professor of animal breeding and genetics at the Norwegian University of Life Sciences (NMBU), proposed genomic selection to predict complex traits in animals and plants in association with their  (observable characteristics resulting from the interaction of their genotypes with the environment). The advantage of this approach to plant breeding is the link between the phenotypic traits of interest, such as yield, sugar level or precocity, and single nucleotide polymorphisms (SNPs). A "snip" (as SNP is pronounced) is a genomic variant at a single base position in the DNA, Souza explained.

"It's the difference in the genomes of any two individuals. For example, one may have an A (corresponding to the nucleotide adenine) that produces a little more than another with a G (guanine) at the same location in the genome. That changes everything," she said. "When you find an association with what you're looking for, like a high level of sugar production, and specific SNPs at different locations in the genome, you can sequence only the population on which your breeding work focuses."

The advances proposed by Aono and colleagues dispense with the need to plant and phenotype throughout the breeding cycle. "We do field experiments in the initial stages of the program to obtain the phenotype of interest for each clone," Souza said.

Click here to see more...

Trending Video

What Is Canola

Video: What Is Canola

Canadian + Oil = Canola. Do you ever wonder what those bright yellow fields are on the Canadian prairies? That's canola! The tiny cross-shaped yellow flowers identify the plants as a part of the crucifer family and, more specifically, they belong to a section (or genus) of the family called Brassica. Brassica plants include mustard, brussels sprouts, cabbage, cauliflower, broccoli and turnip. The canola plant produces tiny seeds that are later crushed to extrude canola oil, one of the most widely used oils in kitchens around the world!