Farms.com Home   News

Farmers May Not Have to Choose Between Crops and Solar Panels

Farmers May Not Have to Choose Between Crops and Solar Panels

By Naoki Nitta

Arable land is at an all-time premium. Since the last ice age, humans have cleared one-third of the earth’s forests and two-thirds of its wild grasslands, much of it for agriculture. And as the world population—8 billion as of last November—continues to expand, there’s ever-increasing pressure on farmland to produce not only more food but also clean energy.

In places such as Yakima County, Washington, it’s created competition for space as land-hungry solar arrays gobble up available fields. Last month, the state’s Energy Facility Site Evaluation Council approved plans to cover 1,700 acres of agricultural land with photovoltaic (PV) panels, brushing aside the county’s moratorium on solar projects and fueling community concerns over the long-term impacts of losing cropland.

A recent study from the University of California, Davis, however, shows how farmers may soon be able to harvest crops and energy together, on common ground. Researchers concluded that bands within the visible light spectrum can be filtered and harnessed separately—blue light waves to generate solar power and red light waves to grow fruits and vegetables—to make maximum use of farmland, all while lowering heat stress and reducing crop waste.

“Why does [agriculture] have to be a zero-sum game if we can optimize the land for both?” asks Majdi Abou Najm, an associate professor in the Department of Land, Air and Water Resources at UC Davis and an Institute of the Environmentfellow, who co-wrote the paper.

Photons, or the particles that make up light, have different properties, he explains: Blue ones have higher energy than their red counterparts, resulting in light with shorter wavelength and higher frequency. While that gives blue light the jolt needed to generate power, the extra pulsing also results in higher temperatures.

However, the plants grown through agrivoltaics are grown in partial shade, and “less light typically means less yield,” says Camporese. This effectively sets a limit on the density of solar panels and plantings on co-generation farms. But translucent arrays would allow for full field coverage of both, he notes, maximizing land use and giving a big bump to per-acre productivity.

Last May, the researchers conducted a limited field study of photo-selective cropping at the UC Davis Agricultural Experiment Station. The team planted processing tomatoes—a common Sacramento Valley crop—on small, equal-sized plots, one canopied with a photo-selective red filter, another with blue and a third left uncovered as a control.

After approximately four months, including a record heat wave in early September, the two filtered plots each yielded about a third less than the uncovered one. Yet when sorted for quality—ripe, unripe or “bad”—the control plot accounted for twice the amount of rotten tomatoes. “So the filters helped in reducing heat stress,” says Abou Najm, and “cut [crop] wastage by more than half.”

Add energy generation on top and the net gain would more than compensate for the diminished harvest, he says. By co-locating crops and solar generation, “100 percent becomes a very low number when you can get 120 or 140 percent yields.”

And for countries and regions facing a tight squeeze on farmland, that makes increased productivity even more valuable, especially given that generating clean energy requires 10 times more land per unit of power than fossil fuels.

Abou Najm also sees the canopied approach as a way for farmers to build climate resilience. Filtering the sun helps the soil retain moisture and shield farmworkers from harsh rays, while lower transpiration means less water is needed for crops. And by generating their own power, farmers could offset rising energy costs and nudge the industry toward embracing electric equipment and vehicles, he adds.

“By 2050, we’ll have [an additional] two billion people on this planet, and we’ll need 60 percent more food, 40 percent more water and 50 percent more energy” than is currently produced, says Abou Najm. Research needs to occur on a transformative level in order to meet those ballooning needs.

 

 

Click here to see more...

Trending Video

What Is Canola

Video: What Is Canola

Canadian + Oil = Canola. Do you ever wonder what those bright yellow fields are on the Canadian prairies? That's canola! The tiny cross-shaped yellow flowers identify the plants as a part of the crucifer family and, more specifically, they belong to a section (or genus) of the family called Brassica. Brassica plants include mustard, brussels sprouts, cabbage, cauliflower, broccoli and turnip. The canola plant produces tiny seeds that are later crushed to extrude canola oil, one of the most widely used oils in kitchens around the world!